Development and applications for environmental DNA (eDNA) with droplet digital PCR (ddPCR)

> Freshwater Summit October 30, 2024 Traverse City, MI

Maggie Petersen Senior Researcher Great Lakes Environmental Center

environmental Deoxyribonucleic Acid (eDNA)

- Genetic material shed into the environment
- Collected from a variety of matrices:
 - Sediment, water, air, spider webs, etc.

eDNA is one tool in the toolbox

- Widely applicable with a broad range of uses; BUT,
- Still just one tool in the toolbox for aquatic ecology

droplet digital Polymerase Chain Reaction (ddPCR)

- The process of amplifying a target sequence with repeated temperature cycles
- Digital PCR is a newer technology than RT-qPCR that is precise, but can be pricey

ddPCR provides 'absolute quantification'

• Digital PCR forms 10-20,000 droplets, each may or may not contain the target, each is individually read as positive or negative

How do we design a ddPCR eDNA assay?

- Case Study: Game fish species in sediment
- Targets:
 - Coho salmon
 - Rainbow trout
 - Brook trout
 - Arctic grayling
- Matrix:
 - Sediment
- Location:
 - Boardman River watershed

Literature review

- We start in the literature for a validated primer and probe set
- Often RT-qPCR as it is older and more widely used

	Check for update		
Received: 31 March 2020 Revised: 14 August DOI: 10.1002/edn3.134	Received: 8 February 2022 Revised: 1 June 2022 Accepted: 10 June 2022 DOI: 10.1111/fwb.13962 ORIGINAL ARTICLE WILEY		
ORIGINAL ARTICLE ORIGINAL ARTICLE DRIGINAL CARTICLE ORIGINAL ARTICLE DRIGINAL ARTICLE ORIGINAL ARTICLE DRIGINAL ARTICLE DRIGINAL ARTICLE DRIGINAL ARTICLE DRIGINAL ARTICLE DRIGINAL ARTICLE DRIGINAL ARTICLE DRIGINAL ARTICLE DRIGINAL ARTICLE	Optimised protocol for the extraction of fish DNA from freshwater sediments Georgia Thomson-Laing ¹ Jamie D. Howarth ² Marcus J. Vandergoes ³ Susanna A. Wood ¹		
Detter of the second of the se	 ¹Cawthron Institute, Nelson, New Zealand ²Victoria University of Wellington, Wellington, New Zealand ³GNS Science, Lower Hutt, New Zealand ⁴Correspondence Georgia Thomson-Laing, Cawthron Institute, 98 Haliras Street, The Wood, Nelson 700, New Zealand. ⁴Email: georgia thomson-laing@cawthron. org.nz ⁴Ending information New Zealand Ministry of Business, Innovation and Employment research programme - Our laker shalth: past, present, future (Lakes3806, COSX1707), Victoria University of Wellington PhD Schlarship ⁴Abstract ⁴Abs		

Sample Collection: Mitchell Creek sediment cores

Sample Collection: Lower Boardman River surface sediment

Sample Collection: Grayling Fish Hatchery & Harrietta Hills Trout Farm

Harrietta Hills Pond and water management

Dan and Jim Vogler at Harrietta Hills

Charlie Buckmaster at the Grayling Fish Hatchery

- Both raising rainbow trout
- Collected detritus from concrete raceways and surface sediment, respectively

Positive Controls

- Designed a synthetic oligo which contains the targets of all four
- Collected fin clips and/or tissue for each species for future cross reaction

Optimization Experiments: PCR conditions

• Temperature gradient, ddPCR reagent selection, primer and probe concentration

Optimization Experiments: Extraction efficiency

- Used Boardman River sediment
- Spiked 0.25 g sediment with 10 μL of gBlock positive at 716 GC/ μL
- Extracted with Qiagen PowerSoil Pro column kits
- Efficiency of 18-29%
 - Area for improvement
 - Future work: compare alternative extraction methods to
 - Goal to minimize FALSE NEGATIVES

Optimization Experiments: Amplification control

- Used Mitchell Creek core sediment samples
- Spiked wells with 716 gene copies per well of positive gBlock
- Ran with standard PCR conditions
- Recovery of 80-91%
 - Low inhibition
 - One benefit of ddPCR

Sediment core DNA quantification

Core	Section	Depth (cm)	Extracted DNA Quantity (ng/µL)	
1	Тор	10-15	10.6	
	Middle	90-95	16.6	
	Bottom	133-138	0.0516	
2	Тор	5-10	17.2	
	Middle	20-25	36.5*	
	Bottom	150-155	0.504	
3	Тор	5-10	90.4*	
	Middle	Middle 50-55		
	Bottom	Bottom 110-115		
Negative Control	S			
	Coring Equipment	Coring Equipment		
	Coring Ambient	0.0644		
	Processing Equipme	Processing Equipment		
	Processing Ambient	Processing Ambient		
	Extraction	ND (< 0.02 ng/mL)		

Mitchell Creek results

Core	Section	Depth (cm)	Coho	Rainbow	Brook	Grayling
3	Тор	5-10	125		624	
	Middle	50-55			125	
	Bottom	110-115				

- Only detected eDNA from fish targets in core 3, at the mouth of the river
- Found coho salmon and brook trout in the top
- Found just brook trout in the middle
- Nothing detected in the deepest section
- No Arctic grayling (expected) or rainbow trout (surprising)

Rainbow trout hatchery results

- Concerned about rainbow trout FALSE NEGATIVES and SENSITIVITY
- Collected sediment from known field sources of rainbow trout
- Very strong signal from all three rainbow trout sources

Next steps

- Compare extraction methods for best extraction efficiencies
- Extract DNA from fish tissue samples
 - Cross reactivity to determine SPECIFICITY to address FALSE POSITIVES
- Field validation with known occurrence data
- Surface water

Other and future projects

- Didymosphenia geminata
- 'Rock snot'

Other and future projects

- New Zealand Mud Snail
- Boardman River as reference sediment for GLEC

Thank you!

Visit us at the GLEC Booth

Please feel free to reach out:

Maggie Petersen <u>mpetersen@glec.com</u> (231) 941-2230 ext. 114

www.glec.com

Molecular Ecology Laboratory Great Lakes Environmental Center Traverse City, Michigan