

MICHIGAN DEPARTMENT OF ENVIRONMENT, GREAT LAKES, AND ENERGY

Salty Water? Not in MY State! How Regulations, Standards, and Monitoring Keep the Fresh Coast FRESH

Kevin Goodwin & Caroline Keson Water Resources Division

Objectives

• WHO: Are we?

• HOW: Are protective Chloride values developed?

• WHAT: ..are we doing with them?

1972 "The Clean Water Act"

 Established the basic structure for regulating and protecting water quality

Required each state to adopt *water quality standards (WQS)* for all surface waters and provided for EPA review & approval/disapproval

Clean Water Act Objective

- "restore and maintain the chemical, physical and biological integrity of the Nation's waters (CWA 101(a))
- Interim goal: "water quality which provides for the protection and propagation of fish, shellfish and wildlife and provides for recreation in and on the water" wherever attainable (CWA 101(a)(2))

Water Quality Standards in Michigan

How are criteria developed

 Toxicological data – freshwater aquatic organisms

This Photo by Unknown Author is licensed under CC BY

This Photo by Unknown Author is licensed under <u>CC BY-SA</u>

- More, diverse data = better
- Acute short term exposure impacts
- Chronic longer term exposure impact
- Process in Rule, follows Great Lakes guidance, & approved by USEPA

Why Chloride?

Based on 2005-2014 Surface Water Sampling

9

Why Chloride?

 Long overdue, questions and concerns based on monitoring

New available data helps produce better criteria

More information for making Permitting decisions

Chloride Aquatic Life Values

Acute = 640 mg/L

Final Acute Value (FAV; Permits)

Acute = 320 mg/L Aquatic Max Value (AMV; Surface Water)

Chronic = 150 mg/L

Final Chronic Value (FCV; Permits and Surface Water)

What does it mean?

- Thresholds relevant to protecting aquatic life in ALL water
- Able to set goals where problems in surface water are identified
- Better guiding permitting decisions

Chloride Monitoring

<u> Urban Lakes</u> :

Kalamazoo; chloride inputs and patterns in small urban lakes

<u>Streams :</u>

Grand Rapids, Lansing, Traverse City; Exploring high conductivity with sensors and chloride sampling, melt/storm events

<u>Statewide chemistry sampling :</u> 250 stream sites statewide; 4x/year, includes chloride

Watershed/Volunteer Groups, Universities :

Streams and Lakes, generally in urbanized watersheds; data range from chloride sampling to chloride rapid strips (Izaak Walton League Salt Watch)

All of these are ongoing ...

Chloride Monitoring

What is being found?

Urban Lakes :

Lake turnover affected in some, concerns for high nutrient concentrations from sediments leading to potential for algae blooms

Streams :

Exceedance of values for aquatic life, both acute and chronic in some urbanized waters

Extreme conductivity and very high chloride levels in some (>3,000 mg/L)

Salt Watch Strip Tests suggest exceedance of chloride values is potentially widespread – Grand Rapids and Southeast MI areas

How do we Monitor for Chloride?

- EGLE efforts originally focused on grab samples collected in 2021 May-November
 - Sampling for chloride involves
 - Labor
 - Lab costs
 - Frequency/timing

What did we find in 2021?

	Chloride:	AMV:	<mark>20</mark> mg/L	FCV: <mark>1</mark>	<mark>50</mark> mg/L			9	Sulfate:	AMV: 60	00 mg/L	FCV: 37	'0 mg/L
	2021		May			July			Sept			Nov	
S	<u>ite</u>	<u>CI</u>	<u>SO4</u>	<u>Cond</u>	<u>Cl</u>	<u>SO4</u>	<u>Cond</u>	<u>CI</u>	<u>SO4</u>	<u>Cond</u>	<u>CI</u>	<u>SO4</u>	Cond
R	ush_Baldwin	83	85	900	66	71	748	94	82	906	82	90	858
B	uck_Kent	150	120	1230	40	38	560	170	130	1300	130	110	1100
S	and_Luce	42	45	735	32	38	614	49	46	772	51	60	728
Р	jacon Olive	110	35	749	65	47	677	98	26		73	41	678
K	ids_BigB	63	21	674	69	21	701	66	16	696	72	21	710
Т	ribD_31	43	24	652	45	25	671	46	22	668	49	25	673
K	ids_Silver	65	23	722	72	22	749	72	19	738	70	21	741
K	iids_11th	57	22	695	46	24	643	62	20	714	64	23	722
Т	ribA_Elmwood	41	23	619	63	23	725	51	19	659	47	23	566
K	ids_Front	53	21	683	59	24	708	61	22	703	60	22	702
G	alloway_Butler	410	41	1860	200	23	1030	230	27	1170	190	32	1100
C	linton_Riverwood	300	40	1500	170	24	954	190	24	894	160	23	957
F	lalfway_Smith	66	270	1050	61	290	1040	50	340	1050	49	150	826
В	attle_Spicerville	62	64	828	24	44	556	84	110	994	35	57	687
C	arrier_St.Joe	360	100	1920	160	42	992	250	93	1460	170	59	1150
C	Carrier_Saginaw	350	93	1900	170	41	1070	260	78	1510	180	69	1200
C	Carrier_RiverTrail	350	90	1900	180	40	1060	240	60	1330	170	56	1180
N	////www.W/hitoDine	43	32	685	36	35	667	48	37	709	47	35	741
	aniVIIII_Tunei	100	54	967	87	43	931	120	59	992	110	49	958
P	laster_Freeman	210	110	1450	130	53	943	190	120	1360	130	69	1020

Kids Creek: More to the Story

- According to chloride values, Kids Creek should be clean and supporting all designated uses
 - But what else do we know about this creek?
- Poor macroinvertebrates = poor water quality = poor aquatic life = impaired
- \$9 million in restoration
- 2 dozen+ projects
- Still impaired...

	Macroinvertebrate Score	Macroinvertebrate Rating	Habitat Score	Habitat Rating
	5 to 9	Excellent	> 154	Excellent
	-4 to 4	Acceptable	105 to 154	Good
	-5 to -9	Poor	56 to 104	Marginal
18			<56	Poor

Average annual chloride contributions from point and nonpoint sources in Michigan.

(Pitzzu, Williamsen, Harrington, 2022)

What are we missing?

- Winter monitoring
 - Continuous sensor takes readings for conductivity and temperature every 15 minutes

https://monitormywatershed.org/browse/

Using Mayfly Monitors

- Less labor (view from a computer)
- No lab analyses
- Maintenance!
- Availability of technology

- Consider costs
 - \$1,160 each for a Mayfly plus installation equipment
 - \$20/month for cellular service

Winter 2023 Mayfly Data

2

EGLE

October 2022-September 2023

Where do we go from here?

- Aquatic life is being harmed by chloride in Kids Creek in winter months
 - We can infer how long this is occurring using conductivity as a proxy
 - Storage vs. Spreading
 - More winter data
- Where else is this occurring?
 - Start small and cheap—conductivity sensors, test strips
 - Continue testing methods against each other
 - What data do we already have?
 - What partners do we already have?

Michigan Department of **Environment, Great Lakes, and Energy**

800-662-9278 www.Michigan.gov/EGLE

Sign up for email updates

Subscribe to our YouTube Channel

Follow us on Twitter @MichiganEGLE